
distributed Structured Prediction
-

Documentation

A. G. Schwing,
T. Hazan,

M. Pollefeys,
R. Urtasun

July 2013

Contents

Abstract iii

1 Introduction 1

2 Technical Introduction 3
2.1 Learning . 3
2.2 Inference . 4

3 The Matlab interface 5
3.1 Textual Interface . 5
3.2 Binary Interace . 8

4 Feature Files 11
4.1 Textual Format . 11
4.2 Binary Format . 12

5 Parameters 15

6 Conclusions 17

i

Abstract

distributed Structured Prediction (dSP) is the most general publicly avail-
able implementation of algorithms for learning and inference in graphical
models. On top of that it provides multiple mechanisms for parallelism to
best leverage high performance computing environments as well as single
computers. The key features of this software package are:

• Support for higher order regions: Arbitrary Hasse diagrams
are taken as input for both learning and inference (Yedidia et al .,
2005; Hazan et al ., 2012). Therefore dSP supports junction tree
optimization just like ordinary message passing on a factor graph.
In addition and at the expense of exponential complexity, models
can be manually tightened up to the tree-width.

• Support for arbitrary counting numbers: The user is free
to specify the counting numbers. Therefore, non-convex Bethe
approximations (Pearl, 1988) are supported just like convex Belief
Propagation (Weiss et al ., 2007; Meltzer et al ., 2009; Hazan &
Shashua, 2008, 2010). Parameters determine whether updates for
the Lagrange multipliers are interleaved with gradient steps for the
model parameters (Hazan & Urtasun, 2010).

• Suitable for hidden conditional random fields or structured
support vector machines: Changing the parameter ε allows op-
timization of the structured support vector machines (SSVM) or
max-margin markov network (M3N) objective (max-margin formu-
lation) (Taskar et al ., 2003; Tsochantaridis et al ., 2005) for ε = 0
just like the conditional random field (CRF) (Lafferty et al ., 2001)
cost function (max-likelihood) for ε = 1.

iii

Abstract

• Support for high performance computing: The package con-
tains modules that parallelize inference w.r.t. samples on a single
machine or w.r.t. the graph coloring of the Hasse diagram (Schwing
et al ., 2011). In addition, learning for distributed memory environ-
ments supports parallelization by dividing the model or by dividing
the samples (Schwing et al ., 2012b). Similarly, parameters deter-
mine whether inference processes multiple samples concurrently or
whether the model is partitioned onto multiple computers. To suit
large clusters we utilize standard message passing libraries like Open-
MPI or MPICH. To save time for the transmission, we also merge
messages of different regions into a single package.

• Different input formats: We designed both a textual as well as
a binary input file format. While the first is suitable for debugging
purposes, the latter targets large scale data sets. Besides file formats
a Matlab mex function provides direct access to the modules.

• Latent variable models: We provide a module to learn from
weakly labeled data, i.e., we support latent SSVMs (Yu & Joachims,
2009) just like hidden CRFs (Quattoni et al ., 2007) by follow-
ing (Schwing et al ., 2012a). Parallelization w.r.t. samples and by
graph coloring is also supported for latent variable models.

At the moment we refer the interested reader to respective publications
for theoretical discussions and mathematical derivations. The purpose of
this document is to provide an introduction to start setting up your own
models using distributed Structured Prediction (dSP).

iv

1 Introduction

The distributed Structured Prediction (dSP) software package provides an
interface to learning with graphical models. No detailed understanding
of the underlying algorithms is required and we therefore focus on the
important aspects only.

The current version of this tool has quite a few predecessors, some of
which were made available to a restricted set of users. Besides our own
intensive usage for computer vision applications such as () we also got
valuable feedback from projects such as (). This helped to revise the
internal data structures and interfaces multiple times resulting in what
we now refer to as version 5.0. We hope to provide a nice user experience
but we are always looking forward to your feedback and suggestions.

1

2 Technical Introduction

Inference and learning are the two tasks commonly addressed when work-
ing with graphical models.

2.1 Learning

Let x ∈ X denote an object from the input space, e.g ., an image or
a sentence, while s ∈ S refers to discrete output space objects, e.g .,
segmentations or parse trees. For learning we are given a data set of
samples (x, s) ∈ D = {(xi, si)}i. We let φ(x, s) ∈ RF map from the
input-output product space to an F -dimensional measurement vector,
also referred to as feature vector.

In addition we construct a loss function `(ŝ, s) which measures the
fitness of an output space estimate ŝ with the provided ground truth
annotation s. Commonly we like output space objects that differ largely
from the ground truth to have a high loss.

The learning task optimizes the following program with w ∈ RF denot-
ing a weight vector which linearly combines the measurements to obtain
a discriminative function for the considered task:

min
w

C

p
‖w‖pp +

∑
(x,s)

ε ln
∑
ŝ

exp
w>φ(x, ŝ) + `s(ŝ)

ε
−w>

∑
(x,s)

φ(x, s). (2.1)

Note the summation over all output space configurations ŝ which makes
this task intractable in general.

For many applications the output space contains multiple variables of
interest, e.g ., all the individual pixel labels or the part of speech for every
word. Let us refer to a subset of variables of the output space via sr,

3

2 Technical Introduction

with region r being an arbitrary sized set of variable indexes. Using this
notation we are able to refer to a single variable within the output space
just like we are able to subsume all the variables within one set. The
more local the measurements the easier the learning and inference tasks.
Hence our interest to keep the size of the regions low.

Directly influenced by the locality is the description of the features
φ(x, s) which is the important part for every user. The measurements are
the key ingredients responsible for the success of the application. Every
element φk(x, s) k ∈ {1, . . . , F} of the feature vector is assumed to be
decomposable into a set of functions with local dependencies only, i.e.,

φk(x, s) =
∑
r∈Rk

φk,r(x, sr). (2.2)

The set Rk subsumes all the regions important for the k-th feature. The
set of all regions is given by R =

⋃
k∈{1,...,F}Rk and we assign a counting

number cr to every region.

2.2 Inference

During inference we employ the weight vector w to compute potentials
θr(sr) =

∑
k:r∈Rk

wkφk,r(x, sr). Hence an approximate inference task
considers

max
b

∑
r,sr

θr(sr)br(sr) + εcrH(br) (2.3)

where br is the set of local beliefs over the region r ∈ R rather than a
single belief over the full output space. The entropy is referred to via
H. Also note the summation over the configurations of local regions sr
only which underlines the importance of finding local parameterizations
for the considered application.

4

3 The Matlab interface

3.1 Textual Interface

All the training samples are subsumed within one cell array of structures,
i.e.,

Samples{x}

where x is the index of the sample. For every sample we specify the
cardinality of all the variables within the output space via an array, e.g .,

Samples{x}.VariableCardinalities = [2 2 2 2 2 2 2 2];

In addition we assign every variable to a specific computer index (starts
counting from 1) via

Samples{x}.MachineIDs = [1 1 1 1 2 2 2 2];

This is not important when using dSP from within matlab and also not
important when using the framework locally. However it allows to dis-
tribute inference and learning onto multiple computers when considering
high performance compute environments.

For learning it is also important to provide observations/annotations.
This is achieved via

Samples{x}.Observation = [1 1 2 2 2 2 1 1];

where we assign a specific state to every variable. The first state is
referred to by 1 and the specific state chosen for a variable is obviously
less or equal to its cardinality. An observation equal zero means that this
variable is latent/hidden.

5

3 The Matlab interface

x1 1 2 3 1 2 3 1 2 3
x2 1 1 1 2 2 2 3 3 3
Element: 1 2 3 4 5 6 7 8 9

Table 3.1: Ordering within the loss and feature vectors for two variables
within a region.

We already emphasized the importance of having a local representation.
This is reflected within the matlab data structure via the cell array of
regions, i.e.,

Samples{x}.Regions{r}

Some of its fields are the counting number and the variable indices involved
in that region.

Samples{x}.Regions{r}.c_r = 1;

Samples{x}.Regions{r}.VariableIndices = [k];

In addition every region is assigned a loss function `(ŝr) which measures
the compatibility of the estimate ŝr with the samples annotation. The
loss function is specified via the array

Samples{x}.Regions{r}.Loss = [0 0];

Note that the ordering within that array is important. The first element
corresponds to all the variables specified within the variable indices array
to take the first state. The second entry corresponds to the first variable
to take state 2 while the other ones remain at state 1, etc. The ordering
is also illustrated in Tab. 3.1.

In addition regions may not have parents assigned

Samples{x}.Regions{r}.Parents = [];

or it may be connected to other regions having the variables within region
r as a subset:

Samples{x}.Regions{r}.Parents = [10 11 13]

6

3.1 Textual Interface

This parent relation ship describes the Hasse diagram, a generalization of
a factor graph, and is used to enforce marginalization constraints between
the local beliefs br.

Arguably the most important part for each region are its features.
Every region is involved in one or more features φr,k(sr) subsumed within
the cell array

Samples{1}.Regions{r}.Features{ix}

To express the weight vector it is multiplied with we use the field r, i.e.,

Samples{1}.Regions{r}.Features{ix}.r = k;

which starts counting from 1. The respective potential is specified via

Samples{1}.Regions{r}.Features{ix}.pot = [1 -1];

and follows the same ordering as the loss, i.e., the ordering specified
within Tab. 3.1.

Having specified all the samples in the above illustrated way we employ
the function

WriteOutput(Samples);

to write the feature and observation files onto the hard disk. The resulting
files can be used as input when working in environments that don’t provide
access to matlab. Note that the resulting files are text files and merely
intended for debugging purposes. For large scale applications it is certainly
more suitable to utilize the binary interface detailed below.

To call dSP we utilize either

[w, Prediction] = structuredPrediction(Samples, Params, task, w_init);

or

[w, Prediction] = latentStructuredPrediction(Samples, Params, task, w_init);

7

3 The Matlab interface

The learning and inference parameters, detailed below, are set via the
structure Params, while the variable task indicates to do learning (task < 2)
or inference (task > 0). Note that task = 1 allows learning and infer-
ence right after each other in order to avoid the computational overhead
for constructing internal data structures. The weight vector used to
initialize training or employed during inference is specified via the F -
dimensional array w_init. All variables besides Samples are optional
with default task = 0 and w_init being an F -dimensional weight vector
of all ones.

3.2 Binary Interace

The binary interface is more suitable for large scale applications. At the
moment it is suitable if features are stored on the hard disk and loaded
into the standalone executables by specifying the binary option. The
format is very similar to the textual input with a few minor modifications
being described subsequently.

Instead of specifying the potential of every region and every feature
vector element separately, we share potentials by just providing a potential
index rather than the potential itself, i.e.,

Samples{x}.Regions{r}.Features{ix}.potIX = k;

Similarly we just provide the potential index of the loss via

Samples{x}.Regions{r}.LossIX = someIX;

rather than specifying the loss directly.
The potential values are then given by a specific cell array

Samples{x}.Potentials{ix}

with each entry having the two fields

Samples{1}.Potentials{anything}.IX = 3;

Samples{1}.Potentials{anything}.pot = zeros(1,dimensions);

8

3.2 Binary Interace

The field IX refers to the index of the potential used within either potIX
or LossIX or both, while the field pot defines the potential itself.

To store the features on the hard drive in a binary file format the
function

WriteOutputBinary(Samples);

is used. In addition

WriteModel(w_init);

is available to construct a binary model file to be used as an initializer.
We also provide a function

Samples = ReadOutput(fileName);

which takes the binary output produced from a standalone executable
and converts it back into a matlab format.

For large scale examples we hence suggest the following workflow:

1. Compute or features within Matlab or directly within C++ and
store them on the hard disk.

2. Process the data using one of the provided standalone executables
(see README for details).

3. Evaluate or continue processing the result either in matlab or via
specific C++ programs.

9

4 Feature Files

Instead of generating the features using the provided Matlab functionality
outlined above, it is naturally possible to use your custom programs to
generate equivalent files. For this purpose we provide a short description
of the file formats having extension .feature and .observation. Note
that every sample has its own file which is useful if the task is parallelized
onto multiple machines w.r.t. samples, since no blocking access occurs.

4.1 Textual Format

As a relict from the UAI file format1 every textual file format starts with
the identifier MARKOV. In the next line we store the number of variables
involved in the sample. The next line contains the cardinality of all the
variables separated by space characters. The subsequent line contains the
IDs for the machines that a variable is assigned to when distributing the
models in a more fine grained manner than distributing per sample. The
IDs are null-based, i.e., we start counting with zero.

Every of the subsequent lines specified a single region r. The parameters
of every region are separated by space characters. The first integer is a
region index followed by a textual float number for the counting number
cr. The next integer specifies the number of variables involved in that
region before we list all the variable indices (starting from zero for the
first). Afterwards we indicate in how many features this region is involved
before listing for every feature the weight vector index (zero based) and
the corresponding potential. Note that the size of the potential is defined
by the involved variables and the ordering follows the matlab format, i.e.,
Tab. 3.1. After having listed all the features we store the loss potential

1http://www.cs.huji.ac.il/project/PASCAL/fileFormat.php

11

4 Feature Files

before providing the number of parents that this region is connected to
and the region indices of the parents.

Every region line can contain a comment at the end containing at most
100 characters. The tag to start the comment is #.

The observation file contains in its first line the number of variables
of this sample. The subsequent line contains the observed state of every
variable. The first state is referred to via 0 and no observation is indicated
by −1.

4.2 Binary Format

The binary file starts off with a 32-bit integer providing the number of
variables involved in this sample. The next array of 32-bit integers of size
corresponding to the number of variables provides their cardinalities while
a subsequent 32-bit integer array of equal length denotes the machine
assignments.

The next 32-bit integer provides the number of regions specified within
this file. For every region we then store

• the region id as a 32-bit integer

• the counting number cr as a 64-bit double

• the number of variables involved and their indices (zero based) as
32-bit integers

• the number of feature elements and for every feature element the
zero-based weight vector index as well as the potential index as
32-bit integers

• the potential index of the loss function as 32-bit integer

• the number of parents and the parent region indices also as 32-bit
integers

The next 32-bit integer provides the number of potentials. For every
potential we then store

12

4.2 Binary Format

• the potential index as 32-bit integer

• the size of the potential as a 32-bit integer

• the potential entries as 64-bit doubles

The observation file is a textual file as described in the previous section.

13

5 Parameters

Subsequently we describe the parameters to adjust the algorithms within
the dSP framework in alphabetic order. The parameters are given to the
program via “<flag> <NumberOrString>”

• (-a) ArmijoIterations: how many Armijo iterations to perform.

• (-b) BetheCountingNumbers: whether to use bethe counting
numbers for the latent variable model. The counting numbers for
structured prediction are always specified within the input files.

• (-c) C: as given in Eq. (2.1).

• (-i) CCCPIterations: how many CCCP iterations to perform
when training with latent variables.

• (-f) CRFEraseMessages: whether to erase the messages after
every iteration. Useful if you want to learn CRFs or structured
Support Vector Machines the traditional way.

• (-j) CRFIterations: how many CRF iterations during one CCCP
iteration.

• (-k) CRFMPIterations: how many message passing iterations
during one CRF iteration.

• (-o) CRFOuterExchange: every how many iterations should
messages between computers be exchanged if the model is divided
onto multiple machines

• (-x) CRFOuterIterations: how often to exchange messages be-
tween computers for computation of the gradient or inference when
distributing the model onto multiple machines

15

5 Parameters

• (-e) epsilon: as given in Eq. (2.1) and Eq. (2.3).

• (-m) MPIterations: how many message passing iterations during
inference.

• (-p) p: as given in Eq. (2.1).

• (-y) ReadBinary: use the binary input format

• (-r) ReuseMessagesForF: whether to reuse the previously com-
puted messages during the Armijo iterations or whether to go with
the traditional approach, i.e., perform inference again

• (-v) Verbosity: more or less debug output

In addition a few program specific parameters are available

• (-d) directory: which directory to get the data from

• (-t) task: which task to execute 0: just learning, 1: learning and
inference, 2: just inference

• (-w) weight vector file: file that contains information on how to
initialize the weight vector

• (-l) leave file: output file, i.e., which file to store the result in
(weight vector and prediction result)

16

6 Conclusions

Have fun, enjoy and please let us know about bugs or suggestions on how
to improve the framework. Please browse to http://alexander-schwing.
de for further information and updates.

17

http://alexander-schwing.de
http://alexander-schwing.de

Bibliography

Hazan, T. and Shashua, A. Convergent message-passing algorithms for inference
over general graphs with convex free energy. In Proc. UAI, 2008.

Hazan, T. and Shashua, A. Norm-Product Belief Propagation: Primal-Dual
Message-Passing for LP-Relaxation and Approximate-Inference. Trans. on
Information Theory, 2010.

Hazan, T. and Urtasun, R. A Primal-Dual Message-Passing Algorithm for
Approximated Large Scale Structured Prediction. In Proc. NIPS, 2010.

Hazan, T., Peng, J., and Shashua, A. Tightening Fractional Covering Upper
Bounds on the Partition Function for High-Order Region Graphs. In Proc.
UAI, 2012.

Lafferty, J., McCallum, A., and Pereira, F. Conditional random fields: Proba-
bilistic models for segmenting and labeling sequence data. In Proc. ICML,
2001.

Meltzer, T., Globerson, A., and Weiss, Y. Convergent message passing algo-
rithms - a unifying view. In Proc. UAI, 2009.

Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann Publishers, 1988.

Quattoni, A., Wang, S., Morency, L.-P., Collins, M., and Darrell, T. Hidden-
state Conditional Random Fields. PAMI, 2007.

Schwing, A. G., Hazan, T., Pollefeys, M., and Urtasun, R. Distributed Message
Passing for Large Scale Graphical Models. In Proc. CVPR, 2011.

Schwing, A. G., Hazan, T., Pollefeys, M., and Urtasun, R. Efficient Structured
Prediction with Latent Variables for General Graphical Models. In Proc.
ICML, 2012a.

19

Bibliography

Schwing, A. G., Hazan, T., Pollefeys, M., and Urtasun, R. Distributed Struc-
tured Prediction for Big Data. In Proc. NIPS Workshop on Big Learning,
2012b.

Taskar, B., Guestrin, C., and Koller, D. Max-Margin Markov Networks. In
Proc. NIPS, 2003.

Tsochantaridis, I., Joachims, T., Hofmann, T., and Altun, Y. Large Margin
Methods for Structured and Interdependent Output Variables. JMLR, 2005.

Weiss, Y., Yanover, C., and Meltzer, T. MAP Estimation, Linear Programming
and Belief Propagation with Convex Free Energies. In Proc. UAI, 2007.

Yedidia, J. S., Freeman, W. T., and Weiss, Y. Constructing free-energy approxi-
mations and generalized belief propagation algorithms. Trans. on Information
Theory, 2005.

Yu, C.-N. and Joachims, T. Learning Structural SVMs with Latent Variables.
In Proc. ICML, 2009.

20

	Abstract
	Introduction
	Technical Introduction
	Learning
	Inference

	The Matlab interface
	Textual Interface
	Binary Interace

	Feature Files
	Textual Format
	Binary Format

	Parameters
	Conclusions

